E) $%
ERAY CV L2RNER LR -4 -DNCHRETF

8,3 > a
>
REEPEA
HKME 3+ T —1 Scalable Serving System for LLM with Kubernetes and

Nvidia MIG * 14 # inference &9 runtime behavior #REFL KB HE » £i&
B MIG R #j#2# resources fragmentation &9 %A

§ 5 — 5L R

FMBHAYODEALEZTHERESNILEEL -2 ® YOLO 54 preliminary
detector *) $ P& G EF X% CNN BREHTRAR

FE-RBFHEACHHA

RMRAHTOCORRERE - ZBTHESAECHH - 154 F encode K1FE
%) FPGA > £38 FPGA 1ZH R BHRFH - BRRAACHTRREIBELE

B E

GIREEE REEFT 915 94

FEFENA

ZERCHEMEE HETERI -FEESR
T CRERITHERTR - RELTHRTR
SRAAHNE RHBRAMS - HEMFRE R
RS 5AH BEFBRS - HUBEEMB -

FohEY

e BZF¥RBARIEELZEECTK
. BAMA
e BZFFREBBUHFTFCABBESFLEMERE

Xe

Author: 2 &% 00

BIN LUN LI

©) mike911209 | & my site | =& mike911209Qgmail.com | W +886 (09) 82-880-498

A passionate programmer who is eager to learn, seeking an opportunity to leverage all my strength into
resolving real-world challenges.

EDUCATION

National Tsing Hua University (NTHU) Sep 2021 - Jun 2025

B.S. in Computer Science
Average GPA 4.27/4.3 on last 2 semesters.

EXPERIENCE

Teaching Assistant of Operating System Sep 2024 - Dec 2024
e Designed the specifications for Machine problem.

e Setup the server environment for class students.

Teaching Assistant of Hardware Design and Lab Sep 2024 - Dec 2024
e Developed the specifications for course materials.

e Resolved issues caused by both hardware and software, thereby enhancing my debugging skills.

Director of Student Association of Dept. of CS, NTHU Sep 2022 - Aug 2023
e Led a team of 10 people to organize everything related to CS students.

e Collaborated with faculty, industry professionals, and student groups.

PROJECTS

Scalable Serving System for LLM with Kubernetes and Nvidia MIG
e Scaling up or out automatically according to LLM inference server’s runtime resources usage.

¢ Reconfigure hardware to resolve resources fragmentation.

e System design, a complete system that receives HI'TP requests and inference automatically, then
response to users.

Mass detection in Mammography image Link to Demo

e Brand new architecture (YOLO + CNN) for mass detection, seamlessly integrating both front
end and back end components for our model’s inference.

e Achieve over 70% precision in the experiment.

Automatic color classification by hydraulic robotic arm on FPGA Link to Demo
e Machine Learning, utilizing python to recognize colors.
e Encode color message into bitstream and transmit them to Digilent Basys3 (an FPGA board).

e Hardware design, novel hardware architecture which leverage syringe pump to operate a robotic
arm to grasp objects and transport them to designated locations.

SKILLS

Programming Languages C/C++, Python, Java, Javascript, Verilog, Go

Tools & Libraries Git, Unix-like shells, Docker, Kubernetes, FPGA, React, SQL, KTEX
Languages TOEIC Listening and Reading Test 915/990

Last updated: October 4, 2024

https://github.com/mike911209
https://mike911209.github.io/
mailto:mike911209@gmail.com
tel:0982-880-498
https://drive.google.com/file/d/1wdLJoB8AWmDQ6WAM3aN4JMXaLkVwNnsx/view?usp=drive_link
https://drive.google.com/file/d/1ia0PHZth9sduqlt7a2sNz5kfgA6AjJln/view?usp=drive_link

X BE 5 BRI AR

Scalable Serving System for LL.Ms with Kubernetes and
NVIDIA MIG

LAY CE

TGI Manager _—

P TGI
Model A .

Device 0

What's operating system?
Request using Model A

P TGI I

Model B Bohiced

Collect Monitor D
Restart TGI Metrics Metrics/y

vy

G
Autoscaler Prometheus Grafana

LI (F m iR e 1)

/.

Request using Model B

s
i

{What's machine learning?

"EFHE - GPU X 4 g4 % < > 53 % job &2 fully utilize GPU ¥ 5 § ik
i@ * Z M > 3¢ & internal resource fragmentation ©]} iE (> project 5 B F iT- B
LLM serving system * f] * NVIDIA MIG # jtr > physically partition GPU » & % i

inference job share ¥ - GPU » &3 Fihi¢ * 5 o

¥ - > @ > LLM inference — & ¥ 2 # + ¥ % 4 workload » A @ Z =
workload distribution & ¥ # balance’LLM inference 77KV cache * g “f ¥ inference
SuB AR 5 FH < 0 FPF & - B auto scaling ik ¢ § inference server ¢nF ik
®* i MPE > AT RE A § 3F § hinference requests ¥ R pF > 4 7

&2 pEape{ % 3R 1 dF performance o

F]p o AR T3 — B Scalable Serving System for LLMs with Kubernetes and
Nvidia MIGe #* % 5t * Hugging Face ¢ Text generation inference (TGI) framework >
5 user requests’ inference FF & B F iR € * Sk %o B4 L 24 B 4 fiz 45 inference server
HERE 0 ##E Nvidia MIG $jkF > 24§24 7 & Cloud computing + # &

eninternal resource fragmentation * 42> ¢ B+ ensure inference P s fault tolerance-

RiEART o AR PR > 1 CUDA process ¥ it i * — 38 MIG
GPU » F]pt 24 i* 2383 scaling policy P#i8 $5% 7 '] o x F] 5 MIG 2224 #747
¥ 4w ehphysically GPU partitioning it » £ 30 3 A 5 4 ¥ 3% #- Kubernetes £2
MIG i & > Flut et PR AEY > F3F S 2 RAPp e R E R a APhiss
* R ITN ek - B osystem 2 ¥ 0 H G A FEF R+ f24 7 internal resource

fragmentation 77/ 3% o

% BT B EE Y e R AR) S E A

Mass detection in Mammogram images

R SRR

(coordinate) background
XY, Z,W
preprocess . P s
confidence score
mass

Png

LRHR (R R e 2)

SR g AR X R T input > i R RARA R R o Gt o SRR

-
)
=

PATE L S 0 B & YOLO & i 5 CNN & (7 FE ECRCAI SRR > & %
YOLO i* & preliminary detector > 4= # ¥ (s > #Z»-ﬁ%l % L% CNN>CNN { &

— b e e

PR RTINS 3 AA B P IEASL - YOLO 330 e CNN
Ao A BBEY §F YOLO 304 » ¥ 38 & A6 H 2 FAIT 0 BuReal g i

=
S

o

fj‘u%ﬂv M5 0 AN {s e fl-score &_0.422 > 7 % @ Yuend - HAFER 0

R
P24

AR R F1F 2t H - % dataset § 3F § f0dh 2 label 0 R EADIRA & H -

ETIAS

YOLO 5iE4 # & e output ¥ CNN @ 2 i8>0 4p o » 3k CNN 4R % »
EERBERE - Ra B BAFTORES BT NPT LERL 7 e

Bit ikt g o AP JE A FnEET § Y b e

3 BT AR R RS AR AR/ 28 A

2PEBRBRIRHS A

Demo: https://drive.google.com/file/d/11a0PHZth9sduqlt7a2sNz5kfgA6AjJIn

E;‘g?f%ggf#_m

an.

I

wmFE |

KD
WEBCAM

4 R

COMPUTER

encoded messpges

FPGA \ /

BERZAESE

% -7?;*%'& (? ﬁ‘&mﬁi;ﬁ—;{ lﬁ-ﬁ.3)

N

gt B R AR Op e A MR A KT 3D SE iR R

ik

HE 33T % FPGA B1 2 i1 B B 5 BIEE > AP g F - B7 12 p

ﬁéfﬁégging = ‘,}'ﬁ’hji';t&—"‘s ﬁhii—%‘%/\#% i]’f’__%‘ E”f‘]i EI é&/&@%#iﬁi¥]

2 wE

(ETS) TOEIC. et)

Taipet City 106472, Taiwan (RO.C)
. | usTENNG.

LI BING-LUN
M Your Score @
405

2002/12/09

Date of Birth

K
| Covymmian - READING

2024/08/25 our S @
3 495

Test Date s
(yyyylmmidd)

| 24319737

Individual (August 2024)
L igu

@WOMMM.MMW
ETS, the ETS togos, and TOEIC are fegistered trademarks of TS in the United States and other coontries, wsed under ficonss in Taiwan.

TOEICH MM MM AR
¥

* TOEIC® MRW AT DRORGNRATDMEMEN MEMNECARZ AW - BOWEYF
HEBZBNAAEARY - RRSARIIEERYFE L TREHZHEARN ¥EHET
WTRMECAT BN -

* TOEICH BN EEXAZBERAARH FAAERRARI2AS MEBCRAEEES
RAHERITARZ M HMADERASAIG LREERARFRELZEE «

* TOEICE MRS « oI RMMIN AR E ERFA -

Your scaled score is between 400 and 435 Test takers who score around 400 Your scaled score is close to 450. Test takers who score around 450 typically

typically bave the following strengths. have the following strengths.

= They can infer the central idea. purpose, and basic context of short spoken
exchanges across a broad range of lary. even when « They can infer the central idea and purpose of a written text. and they can
1ESPONSES are Indwect of not @asy to predict make inferences about details

= They can infer the central idea. purpese, and basic context of extended spoken || * They can read for g. They can factual i even
texts across a broad range of vocabulary. They can do this even when the when it is paraphrased,

fi s Not sup by or and when it is « They can connect mformation across an entire text, and they can make
necessary 1o connect information across the text CONNECHANS between two related texts.

* They can understand details in short spoken exchanges, even when negative * They can understand a broad range of vocabulary, unusual meanings of
constructions are present, when the language is sy or when common words, and idiomatic usage. They can also make distinctions between
difficult vocabulary is used.) the meanings of closely related words.

* They can understand details in extended spoken texts, even when it is « They can rde-based) They can also
necessary 10 connect information across the text and when this infe s Gifficult. complex. and3 Y i i
not by They can details when the information ©
o BCWEGE e el To see weaknesses typical of test takers who score around 450, see the

To see weaknesses typical of test takers who score around 400, see the *Proficiency Description Table.

“Proficiency Description Tabla

Can infor gist, purpose and basic context

87 Can make inferonces based on 62
basad on information that is explicitly o I >+ || information in writien texis e
stated in short spoken texts
Gan inkee gist, parpose and besic cunlest 83 Can Jocate and understand specific 100
based on information that is explicitly v I 100 || information in writion texts - - R
stated in extended spoken lexts

: Can connect information across multiple
sy o E—— | || soriences i sogo witen et and - —
across texis

Can understand dotads in extended o4 86
spoken texts o I oy, (| O9n undorstand vocabuacy In writlen texts | p— 100,
Can understand a speaker’s purpose or 80 o 50
Implied meaning in a phrase of seatance o I o>, || Gan understand grammar in writion toxts e

#HOW TO READ YOUR SCORE REPORT:

Percent Correct of Abilities Measured:
Percentage of items you answered commectly on this tast form for each one of the Abiities Measured. Your perarmance on questions lesting thesa abiiies cannot be companed fo the perfarmance of
test-takors who take othor forms of 10 your own performance on other fost forms.

Note: TOEIC scores more than two years old cannot be reported or validated. |

Pt © 2024 by ETS. M ;
@!m.m!mw‘m1m1€cmW&md!lsn'-wmmwwm-.wmlmm‘unn.

% F A Y

i3

4 R

ikt

2% (GPA/T » %)

TEWSHE ERES i A+/5797
PE Jp &b 1 R A-/5791
T¥ ki ¥ RBRER A+/60.78
FHE e % EQR: 1 Eis A+/65.14
HRR 27 % ¥ Ay K A+/64.83
TR & Atk EQR: - Eis A+/61.26
TE AT SEE I A+/55.65
BEEY S g & R A+/60.27
o B K 3T Rl A+/59.72
Vi A F P A /5590

R Bl % o A+/60.92
Python 3% 3 #25% » /* P AR A+/59.51

n

PR

B 3 R AR

[
Link: https://mike911209.github.io/

EHAEY EFESEE AT BT AL H A R

JUREE § ST IR

BIN LUN LI Q = BINLUNLI

BIN LUN LI

ot to be, that is the question.

B35 - (85 Docker BYZ#(TIRES

SR S R & EE ERCE
Link: https://cge.site.nthu.edu.tw/p/406-1573-276357,r10609.php

3OS A F N AR S R AL B 112 & 1 g B e

& =W <

“ NATIONAL TSING HUA UNIVERSITY

FIER T 11210002 88

BAEA TR
|
'

A% B0 T HY HE o ol ¢ (i

$ % %ﬁ LI, BING-LUN

£ 5% 110062240

B

A2 |
SREER - RHERARE

fEdm |
BRYEREL— "ESSHREENAHF"

2024/04/22 2 /,2’2 .
~
=]

WRBEPOEE

Date Director of the General Education Curriculum

fF 8% 1
Scalable Serving System
for LLM with
Kubernetes and Nivida

MIG

Scalable Serving System for Large Language Models
with Kubernetes and NVIDIA MIG

BIN-LUN LI Derek (Kai-Jun) Lin Li-Shang Lin

Abstract

As the computing power of GPUs continues to grow, many workloads are unable to fully utilize an entire GPU,
leading to internal resource fragmentation. To address this, technologies enabling GPU sharing have become
crucial. NVIDIA’s A100 GPU introduces Multi-Instance GPU (MIG), a feature that physically partitions
a single GPU into multiple slices, allowing more efficient resource allocation. With MIG, the A100 can achieve
significantly higher efficiency.

Meanwhile, serverless platforms have gained popularity with the rise of cloud computing. Due to their
resource management-free nature, auto-scaling capabilities, and cost-efficiency, serverless platforms have become
a preferred choice for users, making them a key focus in cloud computing development.

This project aims to combine these two technologies by developing a Scalable Serving System for Large Language
Models (LLMs) using Kubernetes and NVIDIA MIG. The system dynamically scales based on LLM inference
throughput while maintaining high GPU utilization through MIG partitioning.

1 Introduction

This project introduces a Kubernetes-based serving system for language models that leverages NVIDIA Multi-
Instance GPU (MIG) technology to partition GPU resources into multiple isolated instances. By enabling more
flexible and efficient use of computational resources, the system can allocate different GPU slices based on the
performance needs of LLM inference, optimizing resource utilization and improving overall throughput.

The system integrates Hugging Face’s Text Generation Inference (TGI) framework to manage and serve
language model inferences. A key feature is its real-time monitoring of each TGI instance’s workload, allow-
ing the system to automatically adjust GPU resource allocation for inference tasks. This adaptive resource
management ensures an optimal balance between efficiency and throughput, catering to varying workloads and
enhancing the scalability and flexibility of LLM serving.

2 Background

2.1 Kubernetes

Kubernetes is an open-source platform that automates the deployment, scaling, and management of container-
ized applications. It allows developers to deploy applications packaged in containers (e.g. Docker) and manage
them across a cluster of machines.

Kubernetes is an open-source platform that automates the deployment, scaling, and management of container-
ized applications. It allows developers to deploy applications packaged in containers (e.g., Docker) and manage
them across a cluster of machines. Kubernetes handles the automatic scheduling and orchestration of contain-
ers, ensuring efficient resource utilization. It plays a critical role in cloud environments and serverless platforms

by enabling dynamic resource allocation and scaling without manual intervention. Key features include load
balancing, dynamic scaling based on resource demands, and ensuring high availability, reliability, and scalability
for modern cloud-native and serverless applications.

In our system, containers run inside Kubernetes cluster, which allows us to interact with the containers using

Kubernetes’ predefined API.

2.2 Multi-Instance GPU

NVIDIA Multi-Instance GPU (MIG) is a technology that enables a single GPU to be physically partitioned into
multiple, fully isolated instances, each with dedicated compute, memory, and cache resources. A MIG-enabled
GPU can only be partitioned into fixed types of slices. Table 1 shows all the MIG profiles available on an A100
GPU, and Figure 1 provides a visualization of how independent MIG-enabled GPU instances operate.

MIG allows multiple workloads or users to run independently on the same GPU, optimizing resource utilization
and efficiency. MIG is particularly useful in cloud computing, AI, and high-performance computing environ-
ments, where smaller tasks or multiple users can share GPU resources without performance interference.

We leverage MIG to address internal fragmentation issues (where a single task may not fully utilize an entire

GPU) by partitioning the GPU into multiple smaller instances, each running an LLM inference server. This
not only improves resource utilization but also enables fault tolerance through physical GPU partitioning.

Table 1: Complete list of MIG profile on an A100 GPU.

Slice SM Memory | Cache | Max Count
7g.40gb | 7 GPC 40 GB Full 1
4¢.20gb | 4 GPC 20 GB 4/8
3g.20gb | 3 GPC 20 GB 4/8
2¢.10gb | 2 GPC 10 GB 2/8
1g.5gb | 1 GPC 5 GB 1/8

| W DN =

2.3 Text Generation Inference

Hugging Face Text Generation Inference (T'GI) is a highly optimized, production-ready solution for deploying
large language models. It supports a wide range of models available in the Hugging Face ecosystem, ensuring
broad compatibility.

TGI is easy to deploy using its Docker image, simplifying the integration process. Additionally, it supports
request batching, which enhances throughput and improves resource efficiency, making it an ideal choice for
scalable, high-performance inference in real-time applications.

TGI is used as the inference server in our system. Through the acceleration provided by TGI, the inference
process is optimized.

2.4 Prometheus

Prometheus is an open-source monitoring and alerting toolkit that supports monitoring a wide variety of systems,
including containers and microservices. It stores metrics using a powerful data model that allows for flexible
querying and is designed for reliability and scalability, particularly in cloud-native environments.

The TGI itself can automatically expose multiple metrics that can be collected by the Prometheus monitoring
server. By introducing Prometheus, we can seamlessly collect statistics related to our server operations, monitor
workloads, and adjust resources as needed.

3 Motivation

We are designing a language model serving system that can handle requests utilizing different models. This
approach is driven by several key factors:

e Some tasks may require domain-specific knowledge or specialization that is better suited to certain models.

e While larger models are powerful, it can be resource-intensive, and for simpler tasks, smaller and more
efficient models are preferable.

However, one of the significant challenges in LLM inference is managing memory usage, which includes not
only the model weights but also the growth of the KV cache. Additionally, when a large volume of inference
requests arrives in a short period, the workload can increase dramatically. If the system cannot automatically
scale computational resources to meet this demand, it may result in resource shortages, creating bottlenecks.
Furthermore, when different jobs share a single GPU without MIG, resource contention may occur, preventing
proper distribution of memory and computational resources as different inference jobs compete for the same
resources, resulting in performance degradation.

To address these challenges, we aim to utilize a serverless Kubernetes system. The serverless system offers
dynamic scaling and resource provisioning without manual intervention, making it ideal for fluctuating work-
loads. Kubernetes’s ability to manage containerized applications and efficiently allocate resources allows us to
deploy language models in a scalable, modular fashion. By combining serverless platforms with Kubernetes,
we can ensure auto-scaling of compute resources based on demand, leading to better cost efficiency, resource
optimization, and the ability to handle spikes in traffic while maintaining high system availability.

Model A Model B Model C

SM

Cache/
Memory

w/o MIG with MIG

Figure 1: Inference Resource Allocation: Without vs. With MIG

Figure 1 illustrates a scenario where three different inference requests are served using distinct models on a MIG-
capable GPU. The left-hand side of the figure shows the case without MIG, where, as the workload of each model
fluctuates, there might be interference between models. This can lead to resource contention, where multiple
inference jobs compete for the same resources, potentially resulting in performance degradation. However, by
leveraging MIG (as shown on the right-hand side of Figure 1), we can allocate resources more precisely to each
inference job. This allows for finer control over GPU resources assigned to each model, ensuring they scale
appropriately with the workload, avoiding resource competition, and improving overall efficiency. Additionally,
it takes advantage of the physical GPU partitioning provided by MIG.

To address the issue of resource competition when sharing GPU, we have decided to leverage NVIDIA’s MIG
technology. MIG enables us to physically partition a GPU, such as the A100, into smaller, isolated GPU
instances, each with its own dedicated memory, cache, and compute cores. This isolation ensures that different
language models can run on separate instances without interfering with one another.

Our system integrates MIG to dynamically allocate resources based on the specific needs of each model, ensuring
stable performance even under heavy workloads. The MIG technology also enhances performance by eliminating
the problem of resource contention through physically partitioning GPU. By continuously monitoring key metrics
(which will be elaborated in Section 4.4), the system intelligently adjusts the GPU capacity allocated to each
model without affecting other inference processes. When necessary, the system can automatically reconfigure
the MIG partitions, minimizing resource fragmentation and ensuring efficient utilization of the available
hardware.

This approach allows us to optimize inference performance across multiple models, ensuring that tasks are
handled with the appropriate portion of computational resources while preventing resource contention.

4 System Design

4.1 Overview
Our system is composed of four main components:

¢ TGI manager
e TGI (inference server)

Autoscaler

e Prometheus (metrics scraper)

When a user submits a request to the TGI manager, the request contains the model to be used and the input
prompt. Upon receiving the request, the TGI manager dispatches it to the corresponding TGI worker handling
the specified model.

During inference, TGI exposes metrics which serves as a key factor for scaling. Prometheus scrapes the metrics
exposed by TGI at regular intervals, storing the data in its database, allowing the autoscaler to query the
metrics. If the data stored in the Prometheus database indicates that the model is overloaded, the autoscaler
initiates the scaling routine to ensure that latency remains under a defined threshold.

Next, we will elaborate on each component in detail.

4.2 TGI Manager

TGI manager oversees multiple TGI instances running on MIG slices. When a request comes in, it contains two
key pieces of information:

e Model specification: The specific model that needs to be used for inference.

e Input prompt: The data or query that the model will process.

TGI manager uses these information to route the request to the appropriate TGI instance running on a parti-
tioned MIG slice.

Figure 2 provides an overview of TGI manager’s workflow, which initiates the inference server for the selected
model and allocates smallest size of MIG slice that can fit the model. For each model, we run a dedicated
TGI instance, which is served on a specific GPU slice. These GPU slices are allocated dynamically using MIG,
allowing multiple instances to run on the same GPU hardware with isolated resources.

4.3 Autoscaler

The autoscaler monitors metric for each TGI instance and the associated GPU slice, the TGI request mean
time per token duration: a key metric that reflects the workload of a specific inference request. This metric
is exposed by TGI and can be collected through the Prometheus endpoint. It measures the mean time spent
generating a token. We primarily use this metric to determine whether to adjust the resource allocation for a
single TGI instance.

()
TGI Manager _—
What's operating system? / Model A | Device
Request using Model A P e ——
What's machine learning? b 9TGI I
Request using Model B \ ModelB |
ode Device 1
< < Collect Monitor M
Metri Metri
Restart TGI vy etrics e r|cs/1
N o G
Autoscaler Prometheus Grafana

Figure 2: System Overview

Figure 2 provides an overview of the autoscaler. The TGI instance exposes metrics, which Prometheus stores
in its database. Based on these workload metrics, the autoscaler dynamically adjusts the system by restarting
the TGI instance with an appropriately sized GPU slice to match the current demand.

4.4 Scaling Policies

The autoscaler monitors the TGI request duration metric to determine whether to scale up or down the resources
allocated to a specific TGI. This allows the system to dynamically adjust the resource slice given to a TGI based
on the workload.

To enhance system flexibility, we propose that when a user initializes a new TGI request with a model, they
also specify an intended SLO. This SLO defines the acceptable mean time per token for the TGI request. The
system will then use this value as the threshold for scaling decisions. If the monitored mean time per token
exceeds the user-specified SLO, a scale-up action will be triggered automatically, ensuring optimal performance
according to the user’s requirements.

The autoscaling policy operates as follows:

e When requests use a new model and the corresponding TGI is not yet running, the system allocates the
smallest resource slice that can fit the model.

e If the duration exceeds or falls below the threshold, a scaling action is triggered. A new TGI instance is
then started with a resized resource slice.

e Once the new TGI instance is fully initialized, the system redirects incoming requests to it and terminates
the old TGI instance.

By following this approach, the system can dynamically reassign resources to TGIs based on real-time workload
demands. Figure 3 illustrates this process, where the line represents the request mean time per token duration.
The system uses this value to decide whether to scale up or down.

1g9.5gb 2g.10gb 3g.20gb 2g.10gb

Time / Token T
Duration Scale Up

Thresholds

Scale Down
Thresholds —

A A A Time —»
Scale Up Scale Up Scale Down

Figure 3: Scaling Policies Overview

5 Conclusion

The Scalable Serving System for LLMs with Kubernetes and NVIDIA MIG dynamically monitors inference
server’s workloads and adjusts the resource allocation to each TGI. With MIG technology, the system not only
solve the internal resources fragmentation but also distribute resources much more efficiently, ensuring inference
requests for each model are handled appropriately.

However, there are some limitations with TGI and the PyTorch framework, particularly the lack of robust
support for MIG. This prevents us from splitting models into multiple shards and allocating them to different
slices. By enabling this capability, we could manage heavier workloads more effectively, distributing portions of
the model across different slices while using a single TGI instance, which would increase inference throughput.

Currently, our scaling policy primarily relies on monitoring request handling duration metrics. However, incor-
porating more diverse metrics and using a more comprehensive set of data to define what ”workload” truly
represents could further optimize the system. This might even involve leveraging machine learning techniques
or allowing users to specify more custom SLOs based on their needs, which would enhance the system’s ability
to meet diverse requirements.

Additionally, leveraging Kubernetes’s serverless capabilities allows the system to auto-scale efficiently in response
to fluctuating workloads. The combination of Kubernetes and serverless infrastructure has been critical in
enabling rapid deployment, seamless scaling, and resource optimization. By using this approach, the system
can automatically allocate the necessary compute resources without manual intervention, ensuring that spikes
in traffic are handled smoothly and cost-effectively.

Furthermore, if in the future we are able to utilize live migration for GPU, we could address the issue of
downtime associated with scaling the TGI. Currently, scaling often requires spinning up additional instances of
TGI to avoid disruption, which consumes extra computational resources. With live migration, the system could
seamlessly transfer workloads between GPUs without interrupting active inference requests and model states.
This would eliminate the need for redundant TGI instances handling the same model, reducing computational
overhead and enhancing resource efficiency during scaling events.

This system demonstrates how MIG, Kubernetes, and serverless architecture can work together to ensure higher
inference throughput. We aim to explore alternative inference frameworks, or even create a custom solution, to
better fit our needs. By doing so, we can better utilize available resources, allowing the full power of language
models to be applied more efficiently and effectively.

References

1]

Xinning Hui, Yuanchao Xu, Zhishan Guo, and Xipeng Shen. Esg: Pipeline-conscious efficient scheduling
of dnn workflows on serverless platforms with shareable gpus. In Proceedings of the 33rd International
Symposium on High-Performance Parallel and Distributed Computing, pages 42-55, 2024.

Baolin Li, Viiay Gadepally, Siddharth Samsi, and Devesh Tiwari. Characterizing multi-instance gpu for
machine learning workloads. In 2022 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 724-731. IEEE, 2022.

Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Miso: exploiting multi-
instance gpu capability on multi-tenant gpu clusters. In Proceedings of the 13th Symposium on Cloud
Computing, pages 173-189, 2022.

Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and Chuanxiong Guo. Serving
dnn models with multi-instance gpus: A case of the reconfigurable machine scheduling problem. arXiv
preprint arXiv:2109.11067, 2021.

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Transparent {GPU} sharing in con-
tainer clouds for deep learning workloads. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 69-85, 2023.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu
Li. Infless: a native serverless system for low-latency, high-throughput inference. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 768-781, 2022.

fF 4% 2
Mass detection 1n
Mammogram images

Mass Detection in Mammogram Images

Pinshun Wang Fenyu Hsieh Fangyu Hsu

Abstract—Mass detection in mammogram images is a critical
aspect of early breast cancer diagnosis. This project aims to
develop an efficient model for accurately identifying and mark-
ing masses in mammograms. The proposed approach involves
preprocessing DICOM (Digital Imaging and Communications in
Medicine) images and utilizing YOLO (You Only Look Once) for
initial mass region identification. Subsequently, a CNN (Convo-
lutional Neural Network) is employed to refine and evaluate the
likelihood of each identified region being a mass. Additionally, a
user-friendly web interface is designed for medical personnel to
upload DICOM images directly.

I. INTRODUCTION

Breast cancer is one of the most prevalent cancers among
women globally. Early detection is crucial for treatment and
patient survival. Identifying abnormalities in breast X-ray
imaging and determining the presence of masses are essen-
tial components of this process. Therefore, the goal of this
project is to develop a model capable of accurately identifying
and marking breast masses in mammography. Our dataset is
sourced from EMBED (Emory Breast Imaging Dataset), com-
prising a large number of DICOM images that combine breast
cancer data from different regions and diagnostic images. We
selected approximately 6000 DICOM images meeting specific
requirements for model training and evaluation. However, DI-
COM is a medical imaging format used for storing and trans-
mitting medical images. Therefore, we converted it to PNG
format to better meet the subsequent needs of model analysis
and we also apply a series of preprocessing to the images
before using it in our model. When conceptualizing our model
architecture, we found two main approaches from existing
research: one utilizing specific algorithms for mass separation
followed by CNN analysis, and the other relying solely on
YOLO for detection and classification. Ultimately, we decided
to combine these two approaches. YOLO is renowned for its
fast real-time object detection, quickly identifying regions in
the image that may contain masses. Subsequently, CNN is
used to further analyze and enhance the accuracy of detection
in identified potential regions. The training process involves
using 5000 images for YOLO training and 618 for validation,
utilizing the YOLOv7 model. CNN training involves 3328 im-
ages of masses and backgrounds, using CovNeXt and ResNeXt
models. We merged YOLO and CNN for final evaluation,
striking a balance between YOLO detection threshold and
CNN performance.

II. METHODS
A. Overview

The concept of our framework is shown in the Fig. 1. In our
training phase, DICOM files undergo an initial preprocessing

Yahui Chang BingLun Li Iting Hsueh

step to extract features with enhanced clarity, resulting in
PNG-formatted images. Subsequently, these images are sepa-
rately input into both Convolutional Neural Network (CNN)
and You Only Look Once (YOLO) architectures for model
training. YOLO takes ROI coordinates from metadata as
ground truth to train a model capable of marking the areas that
might be masses. CNN is trained to discern whether specific
features in the images indicate the presence of masses.

In summary, our approach involves preprocessing the
dataset, followed by YOLO identifying potential mass features
based on ROI coordinates from metadata. These identified
features are then input to CNN, which makes the final de-
termination on whether they correspond to masses.

Fig. 1. Overall Design Framework.

B. Data

1) Datasets: We chose EMBED as our dataset for its
extensive collection of mammographic exams, which includes
detailed Regions of Interest annotations for masses.

The EMBED (Emory Breast Imaging Dataset) utilized in
this study is a comprehensive collection of mammographic
exams, encompassing a total of 364,000 screenings and diag-
nostic tests from 110,000 patients across four hospitals over an
eight-year period. This dataset predominantly includes 2D and
C-view mammographic images. This dataset is instrumental
in facilitating advanced studies in breast imaging and cancer
diagnosis. [1]

2) DICOM Preprocessing: The purpose of preprocessing
DICOM is to convert the file format into a format that the
model can read and to enhance the efficiency of subsequent
preprocessing steps. The following will sequentially introduce
how to convert DICOM to PNG, improve the readability of
PNG, and synchronize the metadata table within the dataset.

o Step 1: Transfer DICOM to PNG.
Below is the information we accessed in the DICOM files

— To ensure uniform breast positioning: The attributes
Laterality, ViewPosition, and PatientOrientation in DI-
COM are utilized to determine if the image needs

flipping.

— To obtain the pixel array mapping from DICOM
to an 8-bit PNG: Access to the VOI LUT Function
within the DICOM file is necessary.

— To comprehend pixel value interpretation: The Pho-
tometric Interpretation attribute in DICOM provides
relevant information.

— For windowing in the resulting PNG from DICOM:
It is essential to read the DICOM attributes for window
center and window width.

o Step 2: Windowing

By utilizing window width (WW) and window center

(WQ), it is possible to map the pixel array of DICOM

images to an 8-bit PNG pixel array, highlighting the

crucial color regions of the image. This facilitates subse-
quent preprocessing and model operations for improved
analysis and interpretation.

o Step 3: Update The Metadata Table

Standardizing the format of the "ROI coord’ field in the

unified metadata table to enhance the smooth retrieval

and utilization of data by subsequent models and prepro-
cessing procedures.

3) PNG Preprocessing: Preprocessing of images is an es-
sential step in readying data for both training and application in
the model. This process ensures uniformity in the input to the
neural network, enhances image clarity. We used the following
methods to preprocess raw mammogram X-ray images from
the EMBED database. [2]

o Step 1: Normalization of Breast Orientation
Aligning all PNG files to a uniform orientation for en-
hanced overall consistency, facilitating subsequent model
training and preprocessing.

o Step 2: Handle Images with Paddle
When capturing breast images, different types of paddles
can be utilized to focus on specific tissues for observation.
Among them, spot compression and magnification are
the paddle types we aim to address. Spot compression
involves compressing a specific tissue area to enhance its
visibility, allowing for targeted observation of that region;
magnification, on the other hand, involves enlarging a
specific tissue area, making it the focal point in the
imaging. Since the paddles used in breast imaging are
made of metal, the pixels in the paddle can be particularly
intense, leading to potential confusion in the results of
subsequent models and preprocessing. Therefore, it is
necessary to employ techniques to remove the paddles
and extract the underlying tissue information from within
the paddles.

« Step 3: Remove Noise on Mammogram Images
Raw mammogram X-ray image has noise and small
holes in the image. Using bilateral filtering is able to
reduce the noise and fill in the holes in the image. We
import bilateral filter from OpenCV. Subsequent to the
application of the bilateral filter algorithm, an attempt
the switching bilateral filter was made. However, this
endeavor was unsuccessful. It requires processing each

pixel individually, however our images include extensive
pixel count resulting in a prohibitively time-consuming
computation.

Step 4: Remove Artifacts by Selecting Breast Area
In a raw mammogram X-ray image, labels manually
added by individuals may affect the accuracy of the model
in detecting masses. Therefore, it is necessary to remove
these labels and retain only the breast area. Since labels
are typically smaller compared to the breast area, we can
use Morphological Transformations to eliminate them.
For this purpose, we import the “opening” function from
OpenCV to effectively remove the labels.The results of
the mammogram image after breast tissue enhancement
is illustrated in Fig. 2.

Fig. 2. Example of a mammogram image result of removing artifacts by
selecting breast area: the original image and the image that the artifacts
removed. (from left to right).

« Step 5: Enhancing the Contrast of Breast Tissue

This step involves the amplification of breast tissue con-
trast. We achieved this through using CLAHE algorithm,
designed to intensify the contrast in grayscale images.
CLAHE operates by dividing the image into small blocks,
known as tiles, and then applying histogram equaliza-
tion to each of these independently. The results of the
mammogram image after breast tissue enhancement is
illustrated in Fig. 3.

Fig. 3. Example of a mammogram image result of the breast-tissue using
CLAHE algorithm: the original image and the image with contrast enhance-
ment (from left to right).

o Step 6: Removing Pectoral Muscle
The step incorporates a series of algorithms to eliminate
the pectoral muscle representation in mammogram im-
ages. Removing pectoral muscle is a crucial step in the
image processing sequence, since it displays a similar
intensity to anomalies. The result of this step is shown in
Fig. 4 [3].
The algorithm applied for the removal of the pectoral
muscle uses the Hough transformation in the following
steps:
Step 1: Find the region of interest. Since our images are
uniformly oriented, with the pectoral muscle consistently
positioned in the upper left corner, we specifically target
this area for analysis.
Step 2: Apply the median blur filter. Since the images
may contain some noise, therefore we choose to use the
median blur filter to reduce noise. We also tried out some
other filters but found out the median blur filter best fit
our expectation.
Step 3: Apply the Canny filter for contour detection, the
objective of which is to identify the edges and contours.
The Canny filter achieves this by looking for places where
the brightness changes sharply to find edges. Then, it will
isolate strong and relevant edges.
Step 4: Line detection using the Hough Transform. In
this step, it utilizes the Hough Transform to detect lines
in the image that has been processed by the Canny filter.
It identifies potential lines, then calculates their positions
and orientations.
Step 5: Find the shortlist relevant lines. This step involves
filtering the lines detected in the previous step to identify
the most relevant ones for our analysis. The function
begins by setting angle and distance threshold. It selects
those whose distance and angle align with our predefined
threshold. This would narrows down lines to those that
meet our specific geometric criteria.
Step 6: Apply a Hough mask to the region of interest.
First, it takes the list from the previous step and sorting
these lines based on their distance from the image origin.
Then, it selects the line that is closest, identifying it as the
pectoral line and used it to mask and remove the pectoral
muscle from the image.

C. Model

1) Innovative Model Structure: Inspired by this paper [4],
which utilized morphology method to propose candidate re-
gions of masses, we introduced an innovative two-stage model
structure, leveraging YOLOv7 as an stronger preliminary
mass detector and employing a CNN model to validate the
output generated by YOLO. This strategic combination aims
to achieve superior performance compared to relying solely
on YOLO. Moreover, we anticipate that leveraging the high
accuracy in object detection achieved by YOLO will contribute
to further improving the overall results.

Fig. 4. the image after png preprocessing step 1 to 5 and the image removing
pectoral muscle (from left to right).

As depicted in the Fig. 5, we input preprocessed images
into YOLO to identify objects resembling a mass, along with
associated confidence scores and coordinates. Subsequently,
these information (coordinate, confidence scores) is transmit-
ted to the CNN, which ultimately produces the final prediction
based on the provided data.

Fig. 5. the model structure

2) YOLOV7:

« Purpose of YOLO
As mentioned earlier, we consider YOLO as a preliminary
mass detector in this paper. Consequently, our focus is
not on achieving high accuracy but rather on maximizing
recall. As a result, we plan to adjust the confidence
threshold after training to produce more objects resem-
bling a mass in the output. This intentional adjustment is
expected to lead to lower precision but higher recall.

o Training Preparation
Prior to initiating our training process, several preparatory
steps are imperative for refining YOLO’s labels and
filtering out undesirable data. Initially, we will eliminate
duplicate Regions of Interest (ROIs) by establishing a
specific threshold for the Intersection Over Union (IOU)
in the datasets, set up of the threshold will be discussed
later in CNN’s section. Subsequently, any ROIs that are
entirely black will be excluded. Lastly, ROIs with an area
exceeding 1000*1000 pixels will undergo removal as a
third step. Implementing these three measures not only

enhances the performance of YOLO but also speed up
the training process.

Train Validation Data Split

After removal of undesirable data in the original datasets,
we obtain 5618 Mammogram images in the end. We split
5000 images as training data and 618 images as validation
data in YOLO.

Training Process

The effectiveness of transfer learning in deep neural
network training is demonstrated. We utilized a pre-
trained weight provided by YOLOV7 to train our YOLO,
employing 3 epochs as a warm-up phase and continuing
training for a total of over 100 epochs. Despite the
training duration, precision and recall stop improving
around the 100th epoch, prompting us to early stop the
training process.

To expedite the training process and reduce memory
usage (that is, having larger batch size), we compressed
training images to sizes of 640%640 and 1280%*1280
pixels. However, not only the worse performance in
precision and recall at the larger size, the training time
for 1280*1280 images was also prolonged. Consequently,
we decided to terminate the training process with the
1280*1280 size.

Preliminary Mass Detector

YOLO will provide a confidence score for each identified
object, such scores indicate that the model’s confidence
in its prediction that an object is present within that
bounding box. Consequently, we can set up a certain
threshold to filter out some wrongly predicted mass. A
lower threshold will increase the number of identified
objects output by YOLO, thereby improving recall but
decreasing precision. Conversely, a higher threshold will
yield fewer identified objects, leading to higher precision
but lower recall. As a result, we conduct an experiment
in order to fine-tune the confidence threshold and achieve
better overall performance.

3) CNN:

« Purpose of CNN

As previously indicated, following the preliminary detec-
tion of masses by YOLO, a secondary-stage classifica-
tion is performed using a Convolutional Neural Network
(CNN). The objective is to enhance the precision of
YOLO while concurrently preserving its recall, thereby
improving the overall performance of the final system.
Data labeling

The data generated by YOLO includes the coordinates
and confidence scores for each image, representing the
location of masses in the mammograms. In this section,
we discuss the labeling process for each Region of
Interest (ROI) image as either “mass” or “background.”
Initially, we compare the Intersection over Union (IOU)
between the ground truth provided by the EMBED dataset
and the ROI coordinates provided by YOLO in each
mammogram. An observation reveals that the ROI areas

provided by EMBED are consistently larger than those
identified by YOLO. Consequently, an appropriate IOU
threshold is crucial to prevent mislabeling.

To determine the optimal threshold, we systematically
analyze the ROI images within various IOU intervals.
Fig. 6 illustrates successfully detected masses when the
IOU is between 0.1 and 0.15, while Fig. 7 demonstrates
instances where masses are not correctly cropped when
the IOU is between 0.05 and 0.1. The upper images in the
figures depict the ground truth, while the lower images
represent the output generated by YOLO. Consequently,
by observation from every intervals of IOU, we decide
on an IOU threshold of 0.1. If the IOU between the
ground truth and the data generated by YOLO exceeds
0.1, the data is labeled as mass”; otherwise, it is labeled
as “background.”

Fig. 6. IOU between 0.1-0.15 ROI images

Fig. 7. IOU between 0.05-0.1 ROI images

« Data splitting

618 mammogram images from YOLO’s validation data
are utilized as testing data for the final evaluation of
our overall performance. Moreover, 5000 mammogram
images from YOLO’s training data are partitioned, with
80 percent allocated for training and 20 percent for
validation in the context of the CNN model. Finally, we
identify 5326 detected ROI images in the training dataset,

comprising 2663 mass images and 2663 background im-
ages. Additionally, the validation dataset consists of 1332
detected ROI images, encompassing 666 mass images and
666 background images.

Five different methods applied in training CNN

To improve the performance of the CNN model, we in-
vestigated five distinct approaches for classifying masses,
outlined as follows. Additionally, the experiments were
conducted using PyTorch version 2.1 and CUDA ver-
sion 12.1 within the Anaconda environment with Jupyter
Notebook. The models were trained on Nvidia RTX3060ti
GPU.

— Transfer learning on a single CNN model
Initially, we employed a CNN model to classify
masses detected by YOLO, specifically opting for the
ConvNeXt-tiny and ResNeXt50_32x4d models from
PyTorch. These models were initialized with pretrained
weights ZIMAGENET1K_V1.” The selection of these
models was driven by the advantageous utilization of
transformers in mass detection, enabling the capture of
long-range dependencies within medical images.Unlike
traditional convolutional neural networks, transform-
ers leverage self-attention mechanisms, facilitating the
efficient consideration of global context information.
This capability proves particularly beneficial in mass
detection tasks, where the spatial relationships between
masses and their surroundings play a crucial role.
However,despite the anticipated advantages, our testing
results did not meet the expectations, yielding only
a 65 percent accuracy for both ConvNeXt-tiny and
ResNeXt50_32x4d models.

— Ensemble method with soft-voting
During our investigation of mass pathology classifi-
cation tasks in the literature, we observed that some
researchers employed ensemble methods for mass clas-
sification. Given that our existing model is a two-
stage architecture, involving substantial training and
inference time, we opted for a simpler approach. In-
stead of training new neural networks for ensemble
purposes, as demonstrated in [5], we opted to leverage
the probabilities generated by two pre-trained models,
ConvNeXt-tiny and ResNeXt50_32x4d, as discussed in
previous approach. Our aim was to enhance accuracy
through a straightforward averaging of probabilities.
However, the achieved improvement in accuracy was
merely 0.01-0.02 percent, falling short of our expecta-
tions.

— Ensemble method with hard-voting
As both previously mentioned models yielded subop-
timal performance, even when employed in an en-
semble approach, our focus shifted towards extracting
more information from ROI images by leveraging the
confidence scores provided by YOLO. To enhance
performance, we refined the soft-voting strategy used
earlier, incorporating the YOLO confidence scores.

Upon analyzing the training data, we observed that
mass images received an average confidence score
of 0.163, while background images only received
0.11 on average. Consequently, we opted to classify
ROI images based on their YOLO confidence scores.
Specifically, we designated ROI images with confi-
dence scores greater than 0.15 as mass and those with
scores equal to or below 0.15 as background. This
information was then combined with the pre-trained
ConvNeXt-tiny and ResNeXt50_32x4d models using
a hard-voting approach. Contrary to our expectations,
the results deteriorated, suggesting that this approach
may not be effective for combining YOLO confidence
scores in this context.

Fusion network for CNN and YOLO

Since the YOLO threshold determined in the previ-
ous hard-voting approach was evidently suboptimal,
while determining a fair and effective threshold proved
challenging. Consequently, we pursued an alternative
strategy by training a fusion network to learn the clas-
sification of masses using both the YOLO confidence
score and the probabilities output by the pre-trained
ConvNeXt-tiny and ResNeXt50_32x4d models. The
rationale was that a machine learning model might
better discern these features than manually selecting
a YOLO threshold.

The fusion network comprised a fully connected layer
with dimensions 5x32 and a ReLU activation func-
tion, followed by a 32x2 fully connected layer with
a sigmoid activation function. The Adam optimizer
with a learning rate of 0.001 was employed, and the
loss function was set to crossentropy loss. During the
training process, we observed that the fusion network
achieved a maximum accuracy of only 67 percent. This
outcome suggested that the YOLO confidence score did
not provide significantly more information about mass
images for CNN models. It implies that certain masses
are inherently challenging to classify for both CNN
models and YOLO, making the combination of YOLO
confidence scores an ineffective method.
Concatenate CNN model with SVM

Recognizing the limitations of the YOLO confidence
score, we explored an alternative approach inspired by
traditional R-CNN methods [6]. This involved utilizing
a CNN model as a feature extractor and employing
SVM for classification. Recognizing that relying solely
on CNN-extracted features might be insufficient, we
extended our methodology to include a radiomics ap-
proach. This involved extracting handcrafted features
from ROI images, which were then combined with the
CNN-derived features to enhance overall performance.
For the handcrafted features, 83 features are extracted
through a radiomics approach as Table I shows [7]
[8]. Subsequently, feature selection, involving 4 steps
in total. Step 1, features are scaled using Z-score
for uniformity in magnitude. Step 2,is conducted via

ANOVA F-test, seeking the most significant features
for the models. Step 3, a Pearson Redundancy-Based
Filter (PRBF) is applied to mitigate multicollinearity
by identifying and removing features that are highly
correlated with one another beyond a certain threshold.
Step 3, Backward Elimination using Ordinary Least
Squares (OLS) regression for feature selection. It starts
with all candidate variables and systematically removes
the least significant variables until all variables in
the model are statistically significant. Step 4, using
Recursive Feature Elimination (RFE) with XGBoost
as the base estimator to select the ten most important
features from a set that has already been pruned by
backward elimination. Subsequent to the identification
of the ten most significant features, we visualized
them using a plot diagram. As illustrated in Fig. 8,
it was observed that the distributions of ’mass’ and
background’ classes for four features are indicative
of the similar distribution patterns found across all
selected features. To further our analysis, we proceeded
to plot the remaining features. However, this extended
examination revealed that none of these additional
features demonstrated noticeably distinct distribution
patterns. The observed similarity in feature distribution
for ’mass’ and "background’ categories in our study, as
opposed to the distinct distributions reported in other
works, may be attributed to the differences in method-
ological application. The referenced papers utilized
these methods for discerning benign from malignant
masses, a task for which the features are presumably
more discriminating. In contrast, our study aimed to
differentiate between 'mass’ and ’background’ as de-
termined by YOLO’s outputs, which may inherently
bear closer feature similarities.

Fig. 8. distribution of four key features for "Mass’ (Class 1 in orange) and
’Background’ (Class O in blue).

As for the feature extracted from pretrained ConvNeXt-
tiny and ResNeXt50_32x4d models, concerning the
features extracted from these two models, when
combined, the total number of features amounted

TABLE I
STATISTICAL MEASURES OF RADIOMICS FEATURES

Feature Feature names (optional) Dimensions
categories

First-order statis- Energy, Entropy, ... 18

tics

GLCM Autocorrelation, Cluster Shade, ... 24
GLSZM Gray Level Variance, ... 16
GLRLM Gray Level Run Emphasis, ... 16
NGTDM Coarseness, ... 5

GLDM Dependence Entropy, ... 14

to 2816, we employed the feature selection method
called VarianceThreshold from scikit-learn to eliminate
features with low variance. This process resulted in
a reduction from 2816 features to 526 features.
However, despite this feature reduction, the accuracy
achieved by SVM with linear kernel was only 64
percent, which was lower than using only a single
CNN model to classify.

III. RESULTS
A. YOLO

In this section, we will showcase the outcomes of YOLO’s
predictions under various confidence score thresholds. Given
that YOLO serves as our priliminary mass detector, it becomes
imperative to fine-tune the threshold in order to optimize recall
while maintaining an acceptable level of precision.

In Fig. 9, we note that under YOLO’s default confidence
threshold of 0.25, the model can detect some evident masses.
However, non-round masses are occasionally overlooked.
Therefore, we opted to further reduce the confidence threshold
to 0.15. In Fig. 9, YOLO’s predictions under the 0.15 threshold
are depicted, revealing distinctions compared to the predictions
under the 0.25 threshold. Unlike the 0.25 threshold, the 0.15
threshold results in the detection of more objects, thereby im-
proving recall, albeit at the risk of misclassifying some tissues
as masses. Subsequently, to capture more objects resembling
masses, we also conducted tests with thresholds of 0.10 and
0.05, as illustrated in Fig. 10. Furthermore, Table II presents
the precision, recall, and fl-score for 618 YOLO’s validation
images, evaluated by IOU at each confidence threshold.

TABLE II
PERFORMANCE OF DIFFERENT CONFIDENCE THRESHOLD IN PRELIMINARY
MASS DETECTOR (YOLO)

Threshold Precision Recall F1
0.25 0.615 0.194 0.295
0.15 0.442 0.381 0.410
0.15 0.333 0.512 0.403
0.05 0.204 0.710 0.316
B. CNN

To assess the accuracy of mass predictions, we compute
the Intersection over Union (IOU) between Region of Interest

Fig. 9. Left: Threshold 0.25 image; Right: threshold 0.15

Fig. 10. Left: threshold 0.1; Right: threshold 0.05

(ROI) images and ground truth, as elaborated in Method of
CNN during the data labeling process. Table III comprehen-
sively presents the accuracy, precision, recall, and F1-score for
the five distinct methods under the testing data. The fusion
network is not included in the table, as the training accuracy
remains at 67 percent, and we did not perform additional
evaluation. The top two methods in the table indicate the use
of the single CNN model, while the other methods remain
consistent with the descriptions in Method of CNN.

TABLE III
PERFORMANCE OF DIFFERENT METHODS IN MASS CLASSIFICATION

Method Accuracy Precision Recall F1
ConvNeXt-tiny 0.659 0.666 0.643 0.654
ResNeXt50 0.652 0.651 0.655 0.653
Soft-voting 0.667 0.672 0.653 0.663
Hard-voting 0.654 0.694 0.551 0.614
CNN + SVM 0.648 0.648 0.649 0.648
C. YOLO+CNN

For the evaluation of our overall model performance, we
introduced the ratio R as (1).

increase in precision
R= . ey
decrease in recall
This ratio is utilized to compare the original YOLO per-

formance with the performance after concatenating it with

CNN models. We anticipate R value larger than one, indicating
that the CNN model removes more background images than
mass images. In Table IV below, different YOLO confidence
scores are employed for the preliminary detection of masses,
followed by classification with the pretrained ConvNeXt-tiny
model. Since different methods shown in Table III have the
similar results when concatenating with YOLO, so we only
show the result of using convNeXt-tiny. The ratio R in the
table is calculated by comparing the performance between
Table II and Table IV. The observed trend reveals that R
increases as the YOLO confidence score threshold becomes
higher. This suggests that the CNN model performs better
on images with higher YOLO confidence scores, indicating
that the features learned by YOLO and the CNN model
may be similar. Consequently, the YOLO confidence score
is proportional to the CNN output logits.Additionally, the
results from the fusion network described in Method of CNN
also support this conclusion since combining the confidence
score in the fusion network does not improve the model
performance.

TABLE IV
PERFORMANCE FOR YOLO+CNN UNDER VARIOUS YOLO CONFIDENCE
SCORE THRESHOLDS

Threshold Precision Recall F1 R

0.05 0.334 0.498 0.399 0.614

0.1 0.480 0.376 0.422 1.084

0.15 0.596 0.304 0.403 1.986

0.2 0.698 0.225 0.340 3.614
IV. APPLICATION

A. Front end

we design an user interface via a webpage. In order to
allow user upload the image without any transformation. Our
website enable users to upload DICOM images directly. As the
Fig. 11 show, the model will convert these image into PNG
format and display them on the left side of the website after
preprocessing. And then, our model will identify and mark the
masses, displaying the results on the right side.

B. Back end

After receiving PNG images from the frontend, backend
preprocessing is initiated to optimize the images for analysis.
The processed results are first transmitted back to the frontend
for visual representation. Subsequently, the preprocessed im-
ages undergo YOLO analysis using previously trained parame-
ters to identify potential mass locations. The features identified
as potential masses are then passed to a Convolutional Neural
Network (CNN) for a final determination of their classification
as actual masses.

In the concluding phase, the images with annotated features,
along with information regarding the classification of each
feature as a mass or non-mass, are communicated back to
the frontend for visualization.

Fig. 11. the application structure

V. CONCLUSION

Firstly, YOLO’s identification of the background, resem-
bling the actual context, poses a challenge for our CNN
model. In our system, we initially employ YOLO for object
detection. When the background shares visual features with the
objects, YOLO might mistakenly identify background regions
as objects or extract features insufficient for accurate dif-
ferentiation. Specifically, when YOLO identifies background
regions resembling actual breast cancer lesions, such as certain
tissue structures, shadows, or other visual features, it may
incorrectly classify these areas as potential objects containing
masses. This similarity can lead to inaccuracies in the gener-
ated labels or regions, subsequently impacting further analysis
conducted by the CNN. For our CNN model, the presence of
these similar regions makes it challenging to distinguish which
features correspond to genuine breast cancer lesions, thereby
reducing the model’s ability to accurately detect masses. This
predicament adversely affects the overall performance of the
model, making it challenging to achieve satisfactory accu-
racy and recall. Secondly, in our attempt to explore various
datasets, we encountered challenges as many datasets were
not sufficiently comprehensive. Some did not provide ROI
coordinates, while others had insufficient data volume. After
finally identifying a dataset that better suited our requirements,
we encountered issues during the practical implementation.
We observed mislabeling errors in the Regions of Interest
(ROIs), with many ROIs outlining completely black areas.
These inaccuracies introduced confusion, adversely affecting
the training process and yielding suboptimal model results. In
future work, addressing the mentioned issues and optimizing
our methodology could offer a pathway for improving the
performance of the breast cancer mass detection model.

VI. DATA AND CODE AVAILABILITY

Yon can get more code information about our project with
the following link.
https : //github.com/smilingweiziao/M Lream?28

AUTHOR CONTRIBUTION STATEMENTS

o Pinshun Wang: Mass detection and classification
related paper research, CNN model training and
evaluation, Concatenate YOLO with CNN and evaluate
the performance, Write CNN and result part in the report

e Fenyu Hsieh: Data preprocess method researching,
Remove noise on images, Enhance the contrast of breast
tissue, Remove pectoral muscle, Find other datasets
and do some handle, Handcraft feature extraction and
selection, Help to train CNN, Managed front-end and
back-end integration of the website, Write dataset,
preprocess introduction, step 3, 5, 6, and feature
extraction, selection in report

o Fangyu Hsu: Data preprocess method researching,
remove the artificial labels on the raw mammography.
Find other datasets and do some handle. Design the
UI of the website. Write the PNG preprocess step 4,
Application Front end, model structure figure and do final
check in report. Prepare and conclude the information
for presentation. Presentation speaker. Prepare meeting
minute.

« Yahui Chang: Classify the dataset into with mass and
without mass. DICOM preprocessing. Fix the error in the
metadata table. Extract the tissue in the paddle. Enhance
ROI image. Maintain the API for preprocess Maintain
website backend. Maintain README in repo. Write
overview, DICOM preprocessing, PNG preprocessing
step 1 and 2, backend in the report.

o BingLun Li: Mass detection and classification related
paper research, YOLO model training and evaluation,
prepare meeting agenda, write YOLO and result part in
the report.

o Iting Hsueh: Mass detection and classification related
paper research, YOLO model training, write abstract,
introduction and conclusion in the report.

REFERENCES

[11 A.T.T.R.R.M. G.-1. G. M. C. M. 1. J. H. JiwoongJ.Jeong, BriannaL.Vey,
“The emory breast imaging dataset (embed): A racially diverse, granular
dataset of 3.4 million screening and diagnostic mammographic images,”
Radiology: Artificial Intelligence, 2023.

[2] K. A.D.-V.N. K. M. G. M. A. N. Ruchaya, V. I. Kobera, “Segmentation
of breast masses in digital mammography based on u-net deep convo-
lutional neural networks,” Journal of Communications Technology and
Electronics, 2022.

[3] T.J. O. V.D. T. K. Pascal Vagssa, Nafissatou Mallam Doudou, “Pectoral
muscle deletion on a mammogram to aid in the early diagnosis of breast
cancer,” International Journal of Engineering, Science and Technology,
2020.

[4] W. J. W. S. Z. Y. X. Y. Sun L, Sun H, “Breast mass detection in
mammography based on image template matching and cnn,” Sensors,
2021.

https://github.com/smilingweixiao/ML_Team28

[5] A. S. E. Asma Baccouche, Begonya Garcia-Zapirain, “An integrated
framework for breast mass classification and diagnosis using stacked
ensemble of residual neural networks,” Scientific reports, 2022.

[6] T. D. J. M. Ross Girshick, Jeff Donahue, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2014.

[7]1 Y. Q. B. Z. Meredith A. Jones, Rowzat Faiz, “Improving mammography
lesion classification by optimal fusion of handcrafted and deep transfer
learning features,” Physics in Medicine Biology, 2022.

[8] G.Z.J.H.Y.].Y.C. Min Li, Liyu Zhu, “Predicting the pathological status
of mammographic microcalcifications through a radiomics approach,”
Intelligent Medicine, 2021.

i $% 3

TOHWRBRFHEACH A

CS21040 02

Hardware Design Lab

Final Project Proposal

Team No: 1

Team Name: 7 T A 3K

Project Title: 7 T 45:hE & 4~ 4 4

Name: % £ %4 ID: 110062240
Name: & {p % ID: 110062304

- CRPRABRE WS
f gt project ¥ o A PHPH T LB R PG Basys 3 i i 0 B Basys 3 AR RIS L A B

R
=3
2

,L[/—F}:J ""‘w iﬁhi/{f‘l#;‘] ',""Lfl ‘g‘!:, o

HWFE

AR TP T SR MR - SOk & Verilog 4P B K3

EERERE

encoded rness

FPGA

e
L WEBCAM

4 N

COMPUTER

N /

HE vmadoT !

2023

Chih-Tsun Huang

CS21040 02 Hardware Design Lab Final Project Proposal

GRS R

FOMA SR 0 AP P AR R E R B A g A & A design -

AP R P REE T R BRBREE T g AR R R EAPT B i
BRI P2 FL A BERE RN REF (FH) VB8 Eaid o By
WAEZERAMS AL NZAMBRET LI HNTH A2 K5 L LI EBMBNA -
ARFFAP LY P A F R B B AP R fo

AP AR AR AR B R T S g d o SEBSEERE Y 0 &S AR
ERWGRTF M B P AT A ER RIS A T e B BT AT

o RIF APPSR S LR S RPRRB A T 0 A W2 grit g Al

R AN S E BlAoT

APEE B ot R RS R

2
™
S
F_L
=
%
&
\e}:
=5
2
=
s
&
b3
5

2023 Chih-Tsun Huang

https://www.youtube.com/watch?v=dz2N6qxstk4

CS21040 02 Hardware Design Lab Final Project Proposal
R ARG EEF T A B NS R .

R a:‘é—’]‘?ﬁr" :
BEME SRR RAPT LS ERPEFLIB RSB -

2023 Chih-Tsun Huang

CS21040 02 Hardware Design Lab Final Project Proposal

AP A4t holder ¥ &~ — FFIR* > FFEH L LY ol doh
WS BN R R B e AP T NP
EHE I HR R o

Lt SERIF Y A R T 2R 2 AR o
e e P RSHET WEN PO RO LR RGP
LA B e R R

2 ¥
-

B

BE 2T B4 0 2L i R * python ¢ chiserial fitie o B fx serial port B o @530 & % Basys 3 0 A
P -2 %repE ¢ encode = — 1 byte > encode ¥ B4 T

Red 8’h41
Black 8’h42
Blue 8’h43
Other colors 8’h00

A i 3% 4F python s cv2 i B £z webcam > B~ 18 webcam e B (s 4 R EF - W iEiREE 4 DT
machine learning #c3] ¥ o

B HETA P E AT %Y run — B KNNmodel » 2|¥7¢ %R Y ¥ i Benppd T w i o pt3ny
A E % ¥ Githubrepo ¥ fadt 253 ee i 1 & A en? K o B Lehmodel .5 — i ¥ pRHET o T A
WRpgpd HLABR7 2 q ML F > AAP OB TELEEFRA ALY
3V4 f) R HETEES v @ e

Verilog 4 M K 3* :

swlif)==0

7 N

aummotu‘caua
e~
swvin)
A endesign ¥ LR A G A~ 2 Bostater - BEE I V- BRE B d o F
sw[15],a off pF » *» 3T p 4 4] > @ sw[15] 5 on PFR|*r $& 3] £ B F2 4] o

2023

Chih-Tsun Huang

https://github.com/ahmetozlu/color_recognition

CS21040 02 Hardware Design Lab Final Project Proposal

S E T R TR TS EE o AR 1,2 JkE map TIA g, w e
PPN+ ~a, s ddE map)] RF sz x FebE map Pl R B RSk T Lo S

map
BB

-—\

.»

B e T

veceive m{a

shoulder

counter-
clocknise

shoulder
release —

fore
- am —
clodknize up

AP ikgpdFccounter Sk AT 5 ELEH 5 A 0 4T B

(counter_count < 1700) begin
next_mode3 = 2'b10;

end (counter_count < 15'd4800@) begin
next_model = 2'ble;

end (counter_count < 15'd6500) begin
next_mode3 = 2'b01,;

end (counter_count < 15'd10000) begin
next_mode2 = 2'bl0;

end (counter_count < 15'd1010@) begin
next_modeld = 2'b01;

end (counter_count < 15'd13200) begin
next_model = 2'b01;

end (counter_count < 15'd1329@) begin
next_modeld = 2'bl0;

end (counter_count < 15'd16790) begin
next_mode2 = 2'b01;

end begin

next_counterl = 0@;
next_counter_count = 8;

next_state = NONE;

st et Y RS A

PR S a4
A * en§_ 360 i 4 Mgo96r PR B i 0 i 8 1¥ refresh rate 2 50Hz ~ duty cycle 1%~2%
FPWM M ELA PV U g 2 2 op 0 AAm AN Pandesign ® S Y HI 0 5n
LR LG R T R b

Uart @ 3E 45|
A m{ébflﬁﬂﬁﬁf%ﬁl@% FAFRAE @%JB? s TX (iBafsn 4 erwri=) 3 higho

2023 Chih-Tsun Huang

CS21040 02 Hardware Design Lab Final Project Proposal

= >

T OFORRGER TX el low FiTE EA LRANLT BT RATEE 8 B bit
e data 08 1 bit BERE L > B TX % high » @& En i @izl > 23L0 7

A5 A
A e % Lab8 ¥ - module > fe A F A 52 F Y module Bt hoT B EAZH R
ACACEVETI I SR I

BARIERZ I F AL LHE RAPT UEEARSFENESAPLEALS AL P TEE
o FIPL IR Y {0 FRET AR O R E o

Block Diagram :

mode

Bt BlY T g PSR TG SUELALIE T Motor controller #ie > @ % & B 4 e RxData ~ 4
et AZH A EE R RIEI AR F U gia s {1 B B8 i 172 50 output
model, mode2, mode3, mode4 I Servo Intervace f (mode * % 738 % &5 g\ iE pF 42N 3F pEAL)

% 1 mode /&% PWM 5L -

2023

Chih-Tsun Huang

https://www.instructables.com/UART-Communication-on-Basys-3-FPGA-Dev-Board-Power-1/

CS21040 02 Hardware Design Lab Final Project Proposal

Z O EIFREP

Ry
'

t A i e design ¢ A PR F R FIEEOTAME G 0 A A REPGIRE E G R Y
SenfiRE > R ~coding 2% > H 3V AL A5 A 0 2 Ao BAL) Avenfiin b iR
debug °
L RAAPHME R 2L ﬂﬁ,ﬂw—w%#%iiﬁﬁﬁ@mﬁw S - o T
EHBDAE AFY DA BT 2 B2 BRI T R A
%ﬁ%ﬁﬁo

EASEFE APRRSRTERY > APRERITI AFAHIF AP R PR
H#’%ﬂsgﬁiﬁﬁﬁ%ﬁi’%’“W”%Hﬂ(ﬁﬁ%&‘tAF)M“%%m?%F
&%éﬂi&@m%éiv&ﬁ#@%&%ﬁ?ﬁéﬁﬂvﬂ%%ﬁﬂm%%ﬁJOAWus
%%%ﬁﬁﬂﬁﬁﬁ%ﬁév&“{ﬁ@—ﬁﬁ'? WHE > - HERE - E RN
EBEET UFHLRAF o LE A FEEA P BER IR -
R R Rk ‘sﬁpﬁi‘hﬁ;ﬁ; e BPRE o Bhlm g o FR g eV i BREFRIE
FMEE S AL F - fH A RF ek wﬁwﬁg#'};ﬂ% LR LU@#%@%# o
Flub o sF s AP FE NP edesign SRR AF 0 RA FEFF IR AR s R G T

i

5 AP A #7002 iz 4k 0 Final project o
A1

%.I’hﬂ Z LM ’?ﬁ ",E'_;L ~ 3D JIJ':F ? I«L;BF\E!

-73’&- 3% H %‘L’ ‘E_ N codmg o

APREFEFE > PIA PR TR 0 ZET R E R QAR gEd S H T RS BT T
BooEH e SRR R

FIRL LT i34 3 ¢

B LR AP

Ab| B pFE S E T A REe s R LB BB 4 FA A code T S A 2R S
wo AEEF R Ra DFHAERIELFR 34 B S E A Fcode *Kﬁ{ﬂ * "'ﬂé?flﬁ;

o LA ANE P RPFEFESAPEFILIOEHRI I ETOREE A R ‘3\{} EXAN AN
HRERTRE TR .

A A e

Bolm 3 > G5 a2 AL Laylf > APrgars Sl e XA SR AL
EFFREIUC PR > FPLFE- B FEORGA o § B RATA PR L hir et
Sp g o v 2 AR R R

2023

Chih-Tsun Huang

	Education
	Experience
	Projects
	Skills
	Introduction
	Background
	Kubernetes
	Multi-Instance GPU
	Text Generation Inference
	Prometheus

	Motivation
	System Design
	Overview
	TGI Manager
	Autoscaler
	Scaling Policies

	Conclusion
	Introduction
	Methods
	Overview
	Data
	Datasets
	DICOM Preprocessing
	PNG Preprocessing

	Model
	Innovative Model Structure
	YOLOv7
	CNN

	Results
	YOLO
	CNN
	YOLO+CNN

	Application
	Front end
	Back end

	Conclusion
	Data and Code Availability
	References

